Cerium Nanophases from Cerium Ammonium Nitrate

Langmuir. 2024 Feb 27;40(8):4350-4360. doi: 10.1021/acs.langmuir.3c03611. Epub 2024 Feb 16.

Abstract

Ceria nanomaterials with facile CeIII/IV redox behavior are used in sensing, catalytic, and therapeutic applications, where inclusion of CeIII has been correlated with reactivity. Understanding assembly pathways of CeO2 nanoparticles (NC-CeO2) in water has been challenged by "blind" synthesis, including rapid assembly/precipitation promoted by heat or strong base. Here, we identify a layered phase denoted Ce-I with a proposed formula CeIV(OH)3(NO3xH2O (x ≈ 2.5), obtained by adding electrolytes to aqueous cerium ammonium nitrate (CAN) to force precipitation. Ce-I represents intermediate hydrolysis species between dissolved CAN and NC-CeO2, where CAN is a commonly used CeIV compound that exhibits unusual aqueous and organic solubility. Ce-I features Ce-(OH)2-Ce units, representing the first step of hydrolysis toward NC-CeO2 formation, challenging prior assertions about CeIV hydrolysis. Structure/composition of poorly crystalline Ce-I was corroborated by a pair distribution function, Ce-L3 XAS (X-ray absorption spectroscopy), compositional analysis, and 17O nuclear magnetic resonance spectroscopy. Formation of Ce-I and its transformation to NC-CeO2 is documented in solution by small-angle X-ray scattering (SAXS) and in the solid-state by transmission electron microscopy (TEM) and powder X-ray diffraction. Morphologies identified by TEM support form factor models for SAXS analysis, evidencing the incipient assembly of Ce-I. Finally, two morphologies of NC-CeO2 are identified. Sequentially, spherical NC-CeO2 particles coexist with Ce-I, and asymmetric NC-CeO2 with up to 35% CeIII forms at the expense of Ce-I, suggesting direct replacement.