SeqCorr-EUNet: A sequence correction dual-flow network for segmentation and quantification of anterior segment OCT image

Comput Biol Med. 2024 Mar:171:108143. doi: 10.1016/j.compbiomed.2024.108143. Epub 2024 Feb 13.

Abstract

The accurate segmentation of AS-OCT images is a prerequisite for the morphological details analysis of anterior segment structure and the extraction of clinical biological parameters, which play an essential role in the diagnosis, evaluation, and preoperative prognosis management of many ophthalmic diseases. Manually marking the boundaries of the anterior segment tissue is time-consuming and error-prone, with inherent speckle noise, various artifacts, and some low-quality scanned images further increasing the difficulty of the segmentation task. In this work, we propose a novel model called SeqCorr-EUNet with a dual-flow architecture based on convolutional gated recursive sequence correction for semantic segmentation and quantification of AS-OCT images. An EfficientNet encoder is employed to enhance the intra-slice features extraction ability of semantic segmentation flow. The sequence correction flow based on ConvGRU is introduced to extract inter-slice features from consecutive adjacent slices. Spatio-temporal information is fused to correct the morphological details of pre-segmentation results. And the channel attention gate is inserted into the skip-connection between encoder and decoder to enrich the contextual information and suppress the noise of irrelevant regions. Based on the segmentation results of the anterior segment structures, we achieved automatic extraction of essential clinical parameters, 3D reconstruction of the anterior chamber structure, and measurement of anterior chamber volume. The proposed SeqCorr-EUNet has been evaluated on the public AS-OCT dataset. The experimental results show that our method is competitive compared with the existing methods and significantly improves the segmentation and quantification performance of low-quality imaging structures in AS-OCT images.

Keywords: Anterior chamber volume; Anterior segment OCT; ConvGRU; EfficientNet; Semantic segmentation.

MeSH terms

  • Artifacts*
  • Image Processing, Computer-Assisted
  • Semantics*