Modelling monthly-gridded carbon emissions based on nighttime light data

J Environ Manage. 2024 Mar:354:120391. doi: 10.1016/j.jenvman.2024.120391. Epub 2024 Feb 15.

Abstract

Timely and accurate implementation of carbon emissions (CE) analysis and evaluation is necessary for policymaking and management. However, previous inventories, most of which are yearly, provincial or city, and incomplete, have failed to reflect the spatial variations and monthly trends of CE. Based on nighttime light (NTL) data, statistical data, and land use data, in this study, a high-resolution (1 km × 1 km) monthly inventory of CE was developed using back propagation neural network, and the spatiotemporal variations and impact factors of CE at multiple administrative levels was evaluated using spatial autocorrelation model and spatial econometric model. As a large province in terms of both economy and population, Guangdong is facing the severe emission reduction challenges. Therefore, in this study, Guangdong was taken as a case study to explain the method. The results revealed that CE increased unsteadily in Guangdong from 2013 to 2022. Spatially, the high CE areas were distributed in the Pearl River Delta region such as Guangzhou, Shenzhen, and Dongguan, while the low CE areas were distributed in West and East Guangdong. The Global Moran's I decreased from 2013 to 2022 at the city and county levels, suggesting that the inequality of CE in Guangdong steadily decreased at these two administrative levels. Specifically, at the city level, the Global Moran's I gradually decreased from 0.4067 in 2013 to 0.3531 in 2022. In comparison, at the county level, the trend exhibited a slower decline, from 0.3647 in 2013 to 0.3454 in 2022. Furthermore, the analysis of the impact factors revealed that the relationship between CE and gross domestic product was an inverted U-shaped, suggesting the existence of the inverted U-shaped Environmental Kuznets Curve for CE in Guangdong. In addition, the industrial structure had larger positive impact on CE at the different levels. The method developed in this study provides a perspective for establishing high spatiotemporal resolution CE evaluation through NTL data, and the improved inventory of CE could help understand the spatial-temporal variations of CE and formulate regional-monthly-specific emission reduction policies.

Keywords: Back propagation neural networks; Carbon emissions; Impact factor; Monthly-gridded; Nighttime light; Spatial autocorrelation.

MeSH terms

  • Carbon Dioxide / analysis
  • Carbon* / analysis
  • China / epidemiology
  • Cities
  • Industry*
  • Rivers
  • Spatial Analysis

Substances

  • Carbon
  • Carbon Dioxide