Theoretical Study on the Mechanisms and Kinetics of Atmospheric Oxidation of Tetrafluoropropyne and Its Analogues

J Phys Chem A. 2024 Feb 29;128(8):1511-1522. doi: 10.1021/acs.jpca.3c08331. Epub 2024 Feb 16.

Abstract

Tetrafluoropropyne (C3F4) is a potential dielectric in various electrical insulating equipment to replace the most potent industrial greenhouse gas, sulfur hexafluoride. Atmospheric oxidation of C3F4 by OH radicals in the presence of molecular O2 has been investigated theoretically in order to clarify the lifetime and degradation products at mechanistic and kinetic aspects. Energetic minimum-energy pathways for the C3F4 + OH/O2 reactions were calculated in detail using various theoretical methods including density functional M06-2X and CCSD for geometries, CBS-QB3, CCSD(T), and multireference RS2 with extrapolation to the complete basis-set limit for energies. It has been demonstrated that the C3F4 + OH reaction takes place via the bifurcated C-O addition/elimination routes leading to CF3C(OH)═CF and CF3C═C(OH)F radical adducts, where the latter is more preferable in view of the difference in barrier heights (1.3 vs 0.3 kcal/mol), followed by H-migration, HF-elimination, and C-C and C-F bond fission. The atmospheric lifetime of C3F4 was estimated to be about 13 days, which is indicative of a very short-lived substance in the atmosphere. Further degradation of the energy-rich C3F4OH* intermediates by O2 takes place spontaneously in view of the successive barrier-free and highly exothermic pathways, producing a variety of fluorinated acids, anhydrides, biacetyls, and regenerating OH radicals. For comparison, the reactions of C3H4, CF3CCH, and CH3CCF with OH radicals were examined to clarify the F-substitution effect. It is revealed that the reactivity of fluoropropynes could be either reduced by CF3 or enhanced by atomic F attached to the acetylenic carbon. The present work provides a fundamental understanding of the reactions of fluoroalkynes with OH/O2. The use of C3F4 as a promising eco-friendly gaseous dielectric alternative to SF6 has been supported.