Improvement of Efficiency in Kesterite Solar Cells by Intentionally Inserting a Thin MoS2 Layer into the Back Interface

ACS Appl Mater Interfaces. 2024 Feb 28;16(8):11026-11034. doi: 10.1021/acsami.3c18045. Epub 2024 Feb 16.

Abstract

A Mo(S,Se)2 interfacial layer is formed inevitably and uncontrollably between the Mo electrode and Cu2ZnSn(S,Se)4 (CZTSSe) absorber during the selenization process, which significantly influences the performance of CZTSSe solar cells. In this work, an ultrathin MoS2 layer is intentionally inserted into Mo/CZTSSe to reduce the recombination and thus optimize the interface quality. It is revealed that the absorber exhibits a continuous and compact morphology with bigger grains and remarkably without pinholes across the surface or cross-sectional regions after MoS2 modification. Benefitting from this, the shunt resistance (RSh) of the device increased evidently from ∼395 to ∼634 Ω·cm2, and simultaneously, the reverse saturation current density (J0) realized an effective depression. As a result, the power conversion efficiency (PCE) of the MoS2-modified device reaches 9.64% via the optimization of the thickness of the MoS2 layer, indicating performance improvements with respect to the MoS2-free case. Furthermore, the main contribution to the performance improvement is derived and analyzed in detail from the increased RSh, decreased J0, and diode ideality factor. Our results suggest that the Mo/CZTSSe interface quality and performance of CZTSSe solar cells can be modulated and improved by appropriately designing and optimizing the thickness of the inserted MoS2 layer.

Keywords: CZTSSe solar cells; Mo/CZTSSe interface; MoS2 layer; power conversion efficiency; reverse saturation current density; shunt resistance.