Growth performance, organs weight, intestinal histomorphology, and oocyst shedding in broiler chickens offered novel single strain Bacillus subtilis isolated from camel dung and challenged with Eimeria

Poult Sci. 2024 Apr;103(4):103519. doi: 10.1016/j.psj.2024.103519. Epub 2024 Feb 7.

Abstract

We evaluated a single strain Bacillus subtilis BS-9 direct-fed microbial (BSDFM) isolated from camel dung in Eimeria challenged broiler chickens. Seven-hundred d-old Ross 708 male chicks were placed in pens (25 birds/pen) and allocated to 2 treatments (n = 14). From d 0 to 13, control pens received untreated water (-BSDFM), and 2 treated pens received water and 2 mL x 108 colony forming unit/bird/d (+BSDFM); daily water intake (WI) was recorded. On d 9, birds in half (+Eimeria) of pens per treatment received of 1 mL of Eimeria maxima and Eimeria acervulina oocysts orally, and the other half (-Eimeria) sterile saline solution. Birds had ad libitum access to feed and a water line from d 14. Feed intake (FI), body weight (BW) and mortality were recorded for calculating BW gain (BWG) and feed conversion ratio (FCR). On d 14 and 35, samples of birds were necropsied for organ weight and intestinal measurements. Excreta samples were collected from d 14 to 19 for oocyst count. There was no treatment effect (P > 0.05) on growth performance or WI on d 0 to 9. There were interactions between BSDFM and Eimeria on d 19 (P = 0.014) and 29 (P = 0.036) BW with unchallenged +BSDFM birds being heavier than birds in the other treatments. The main effects (P < 0.05) on d 10 to 35 FI, BW, and BWG were such that +BSDFM increased and Eimeria decreased (P < 0.01) these parameters. There was interaction (P = 0.022) between BSDFM and Eimeria on d 10 to 35 FCR such that the FCR of challenged -BSDFM birds was poor than that of unchallenged counterparts, but none differed with +BSDFM birds. There was an interaction (P = 0.039) between BSDFM and Eimeria on d 14 bursa weight with challenged birds exhibiting heavier bursa than unchallenged +BSDFM birds. Eimeria reduced (P = 0.01) and BSDFM (P = 0.002) increased the villi height to crypt depth ratio. Results showed that BSDFM supplementation via water can support the growth performance of broiler chickens challenged with Eimeria and may be a strategy to reduce adverse effects of coccidiosis.

Keywords: Eimeria and coccidiosis; broiler chicken; growth performance and intestinal health; single strain Bacillus subtilis (BS-9) direct-fed microbial.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Bacillus subtilis
  • Camelus
  • Chickens
  • Coccidiosis* / veterinary
  • Diet / veterinary
  • Dietary Supplements
  • Eimeria*
  • Male
  • Oocysts
  • Organ Size
  • Poultry Diseases*
  • Water

Substances

  • Water