Broadband tunable laser and infrared camouflage by wavelength-selective scattering metamaterial with radiative thermal management

Opt Lett. 2024 Feb 15;49(4):935-938. doi: 10.1364/OL.512245.

Abstract

Metamaterial-based multispectral (including infrared and multiple lasers) camouflage compatible with non-atmospheric window radiative cooling is effective for low observability against multiple detection means. However, simultaneously achieving low reflectance in a non-atmospheric window band and broadband laser scattering, especially for a broadband tunable long-wave infrared laser, remains challenging. This Letter proposes a wavelength-selective scattering metamaterial (WSSM) that realizes effective camouflage for mid-wave infrared (MWIR), long-wave infrared (LWIR), broadband tunable LWIR and near-infrared (NIR) lasers. Moreover, the WSSM achieves radiative cooling in a non-atmospheric window (5-8 µm). The simulated emissivity is 0.19/0.20 in MWIR and LWIR bands, while it is 0.54 in a non-atmospheric window band that ensures radiative cooling. The WSSM also achieves low specular reflectance (4.35%) in 8-12 µm for broadband tunable laser camouflage, together with low reflectance at 1.06 µm and 1.55 µm. The thermal simulation is also conducted, demonstrating that the WSSM has a surface temperature decrement of 12.6°C compared to the conventional low-emissivity reference at the heated temperature of 400°C due to selective emission. The radiation temperatures have a reduction of 37%/64% than the real surface temperature in MWIR and LWIR bands. This work achieves the multispectral compatible camouflage by regulating specular reflection and scattering, providing a novel, to the best of our knowledge, approach for manipulating electromagnetic waves.