2,4'-Dihydroxybenzophenone Exerts Bone Formation and Antiosteoporotic Activity by Stimulating the β-Catenin Signaling Pathway

ACS Pharmacol Transl Sci. 2024 Jan 19;7(2):395-405. doi: 10.1021/acsptsci.3c00251. eCollection 2024 Feb 9.

Abstract

2,4'-Dihydroxybenzophenone (DHP) is an organic compound derived from Garcinia xanthochymus, but there have been no reports on its biochemical functions and bioavailability. In this study, we evaluated whether DHP affects osteoblast differentiation and activation in MC3T3-E1 preosteoblast cells, as well as antiosteoporotic activity in zebrafish larvae. Nontoxic concentrations of DHP-treated MC3T3-E1 preosteoblast cells increased alkaline phosphatase (ALP) activation and mineralization in a concentration-dependent manner, accompanied by higher expression of osteoblast-specific markers, including Runt-related transcription factor 2 (RUNX2), osterix, and ALP. Consistent with the data in MC3T3-E1 preosteoblast cells, DHP upregulated osteoblast-specific marker genes in zebrafish larvae and simultaneously enhanced vertebral formation. We also revealed that DHP increased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 and the total expression of β-catenin in the cytosol and markedly increased the localization of β-catenin into the nucleus. Furthermore, DHP restored the prednisolone (PDS)-induced marked decrease in ALP activity and mineralization, as well as osteoblast-specific marker expression. In PDS-treated zebrafish, DHP also alleviated PDS-induced osteoporosis by restoring vertebral formation and osteoblast-related gene expression. Taken together, these results suggest that DHP is a potential osteoanabolic candidate for treating osteoporosis by stimulating osteoblast differentiation.