Prediction of Adsorption and Diffusion of Shale Gas in Composite Pores Consisting of Kaolinite and Kerogen using Molecular Simulation

J Phys Chem C Nanomater Interfaces. 2023 May 16;127(20):9452-9462. doi: 10.1021/acs.jpcc.3c00499. eCollection 2023 May 25.

Abstract

Natural gas production from shale formations is one of the most recent and fast growing developments in the oil and gas industry. The accurate prediction of the adsorption and transport of shale gas is essential for estimating shale gas production capacity and improving existing extractions. To realistically represent heterogeneous shale formations, a composite pore model was built from a kaolinite slit mesopore hosting a kerogen matrix. Moreover, empty slabs (2, 3, and 4 nm) were added between the kerogen matrix and siloxane surface of kaolinite. Using Grand-Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, the adsorption and diffusion of pure methane, pure ethane, and a shale gas mixture were computed at various high pressures (100, 150, and 250 atm) and temperature of 298.15 K. The addition of an inner slit pore was found to significantly increase the excess adsorption of methane, as a pure component and in the shale gas mixture. The saturation of the composite pore with methane was observed to be at a higher pressure compared to ethane. The excess adsorption of carbon dioxide was not largely affected by pressure, and the local number density profile showed its strong affinity to kerogen micropores and the hydroxylated gibbsite surface under all conditions and pore widths. Lateral diffusion coefficients were found to increase with increasing the width of the empty slab inside the composite pore. Statistical errors of diffusion coefficients were found to be large for the case of shale gas components present at low composition. A larger composite pore configuration was created to investigate the diffusion of methane in different regions of the composite pore. The calculated diffusion coefficients and mean residence times were found to be indicative of the different adsorption mechanisms occurring inside the pore.