Dimension reduction and outlier detection of 3-D shapes derived from multi-organ CT images

BMC Med Inform Decis Mak. 2024 Feb 14;24(1):49. doi: 10.1186/s12911-024-02457-8.

Abstract

Background: Unsupervised clustering and outlier detection are important in medical research to understand the distributional composition of a collective of patients. A number of clustering methods exist, also for high-dimensional data after dimension reduction. Clustering and outlier detection may, however, become less robust or contradictory if multiple high-dimensional data sets per patient exist. Such a scenario is given when the focus is on 3-D data of multiple organs per patient, and a high-dimensional feature matrix per organ is extracted.

Methods: We use principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and multiple co-inertia analysis (MCIA) combined with bagplots to study the distribution of multi-organ 3-D data taken by computed tomography scans. After point-set registration of multiple organs from two public data sets, multiple hundred shape features are extracted per organ. While PCA and t-SNE can only be applied to each organ individually, MCIA can project the data of all organs into the same low-dimensional space.

Results: MCIA is the only approach, here, with which data of all organs can be projected into the same low-dimensional space. We studied how frequently (i.e., by how many organs) a patient was classified to belong to the inner or outer 50% of the population, or as an outlier. Outliers could only be detected with MCIA and PCA. MCIA and t-SNE were more robust in judging the distributional location of a patient in contrast to PCA.

Conclusions: MCIA is more appropriate and robust in judging the distributional location of a patient in the case of multiple high-dimensional data sets per patient. It is still recommendable to apply PCA or t-SNE in parallel to MCIA to study the location of individual organs.

Keywords: Bagplots; CT scans; Dimension reduction; Multiple co-inertia analysis; Outlier detection.

MeSH terms

  • Algorithms*
  • Cluster Analysis
  • Humans
  • Principal Component Analysis
  • Tomography, X-Ray Computed*