Restructuring a passive colloidal suspension using a rotationally driven particle

Soft Matter. 2024 Feb 28;20(9):2151-2161. doi: 10.1039/d4sm00010b.

Abstract

The interaction between passive and active/driven particles has introduced a new way to control colloidal suspension properties from particle aggregation to crystallization. Here, we focus on the hydrodynamic interaction between a single rotational driven particle and a suspension of passive particles near the floor. Using experiments and Stokesian dynamics simulations that account for near-field lubrication, we demonstrate that the flow induced by the driven particle can induce long-ranged rearrangement in a passive suspension. We observe an accumulation of passive particles in front of the driven particle and a depletion of passive particles behind the driven particle. This restructuring generates a pattern that can span a range more than 10 times the driven particles radius. We further show that size scale of the pattern is only a function of the particles height above the floor.