Fabrication of Electrode Material for Textile-Based Triboelectric Nanogenerators: Research of the Relationship between Output Performance and Dielectric Material Strain

Langmuir. 2024 Feb 27;40(8):4022-4032. doi: 10.1021/acs.langmuir.3c02375. Epub 2024 Feb 13.

Abstract

In this work, a textile-based triboelectric nanogenerator (TENG) device was developed through electroless plating technology to prepare electrode material. Hydrophilic groups on the fiber surface are able to absorb Ag+, which could play a role in the center of a catalyst to reduce Cu2+ to fabricate Cu-coated cotton toward the fabrication of TENG electrode material. The TENG device established admirable performance and good stabilization, and a maximum voltage at 9.6 V was detected when the stress and strain on the polydimethylsiloxane layer are 82.6 kPa and 5.8%, respectively. In addition, the relationships among device properties and strain/thickness of dielectric materials have been explored in depth as well. The output voltage of the device increases gradually with the enhancement of dielectric strain and stress. As expected, the TENG as-fabricated device was installed to various physical behaviors to illustrate the harvesting of power of knee-jerk movements.