Recent progress in molecular transition metal catalysts for hydrogen production from methanol and formaldehyde

Dalton Trans. 2024 Mar 5;53(10):4363-4389. doi: 10.1039/d3dt03668e.

Abstract

Hydrogen is considered as a potential alternative and sustainable energy carrier, but its safe storage and transportation are still challenging due to its low volumetric energy density. Notably, C1-based substrates, methanol and formaldehyde, containing high hydrogen contents of 12.5 wt% and 6.7 wt%, respectively, can release hydrogen on demand in the presence of a suitable catalyst. Advantageously, both methanol and aqueous formaldehyde are liquid at room temperature, and hence can be stored and transported considerably more safely than hydrogen gas. Moreover, these C1-based substrates can be produced from biomass waste and can also be regenerated from CO2, a greenhouse gas. In this review, the recent progress in hydrogen production from methanol and formaldehyde over noble to non-noble metal complex-based molecular transition metal catalysts is extensively reviewed. This review also focuses on the critical role of the structure-activity relationship of the catalyst in the dehydrogenation pathway.

Publication types

  • Review