Orthogonal mode couplers for plasmonic chip based on metal-insulator-metal waveguide for temperature sensing application

Sci Rep. 2024 Feb 12;14(1):3474. doi: 10.1038/s41598-024-54244-0.

Abstract

In this work, a plasmonic sensor based on metal-insulator-metal (MIM) waveguide for temperature sensing application is numerically investigated via finite element method (FEM). The resonant cavity filled with PDMS polymer is side-coupled to the MIM bus waveguide. The sensitivity of the proposed device is ~ - 0.44 nm/°C which can be further enhanced to - 0.63 nm/°C by embedding a period array of metallic nanoblocks in the center of the cavity. We comprehend the existence of numerous highly attractive and sensitive plasmonic sensor designs, yet a notable gap exists in the exploration of light coupling mechanisms to these nanoscale waveguides. Consequently, we introduced an attractive approach: orthogonal mode couplers designed for plasmonic chips, which leverage MIM waveguide-based sensors. The optimized transmission of the hybrid system including silicon couplers and MIM waveguide is in the range of - 1.73 dB to - 2.93 dB for a broad wavelength range of 1450-1650 nm. The skillful integration of these couplers not only distinguishes our plasmonic sensor but also positions it as a highly promising solution for an extensive array of sensing applications.

Keywords: Metal–insulator–metal waveguide; Momentum mismatch; Orthogonal couplers; Plasmonics; Polydimethylsiloxane; Surface plasmons; Temperature sensing.