Optimal enzyme profiles in unbranched metabolic pathways

Interface Focus. 2024 Feb 9;14(1):20230029. doi: 10.1098/rsfs.2023.0029. eCollection 2024 Feb 15.

Abstract

How to optimize the allocation of enzymes in metabolic pathways has been a topic of study for many decades. Although the general problem is complex and nonlinear, we have previously shown that it can be solved by convex optimization. In this paper, we focus on unbranched metabolic pathways with simplified enzymatic rate laws and derive analytic solutions to the optimization problem. We revisit existing solutions based on the limit of mass-action rate laws and present new solutions for other rate laws. Furthermore, we revisit a known relationship between flux control coefficients and enzyme abundances in optimal metabolic states. We generalize this relationship to models with density constraints on enzymes and metabolites, and present a new local relationship between optimal reaction elasticities and enzyme amounts. Finally, we apply our theory to derive simple kinetics-based formulae for protein allocation during bacterial growth.

Keywords: bacterial growth law; enzymatic rate law; enzyme demand; metabolic pathway; optimization; protein allocation.

Associated data

  • figshare/10.6084/m9.figshare.c.6976367