The Uridylyl Transferase TUT7-Mediated Accumulation of Exosomal miR-1246 Reprograms TAMs to Support CRC Progression

Adv Sci (Weinh). 2024 Apr;11(15):e2304222. doi: 10.1002/advs.202304222. Epub 2024 Feb 11.

Abstract

Tumor-associated macrophages (TAMs) play a crucial role in promoting tumor growth and dissemination, motivating a search for key targets to interfere with the activation of TAMs or reprogram TAMs into the tumor-suppressive type. To gain insight into the mechanisms of macrophage polarization, a designed co-culture system is established, allowing for the education of macrophages in a manner that closely mimics the intricacies of TAMs in the tumor immune microenvironment (TIME). Through database mining, exosomal miR-1246 is identified and is then validated. Exosomal miR-1246-driven polarization of TAMs disrupts the infiltration and function of CD8+ T cells. Mechanically, the amassment of exosomal miR-1246 stems from TUT7-mediated degradation of small noncoding RNA, a process stabilized by SNRPB, but not the precursor of miR-1246. Moreover, an Exo-motif is present in the exosomal miR-1246 sequence, enabling it to bind with the exosomal sorting protein hnRNPA2B1. RNA-seq analysis reveals that exogenous miR-1246 modulates the polarization of TAMs at a post-transcriptional level, emphasizing the pivotal role of the NLRP3 in macrophage polarization. In conclusion, the findings underscore the importance of exosomal miR-1246 as a trigger of macrophage reprogramming and uncover a novel mechanism for its enhanced presence in the TIME.

Keywords: NLRP3; TUT7; colorectal cancer; exosomes; tumor‐associated macrophages.

MeSH terms

  • CD8-Positive T-Lymphocytes / metabolism
  • Macrophages / metabolism
  • Menogaril / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Tumor-Associated Macrophages*

Substances

  • Menogaril
  • MicroRNAs