Observation of giant room-temperature anisotropic magnetoresistance in the topological insulator β-Ag2Te

Nat Commun. 2024 Feb 10;15(1):1259. doi: 10.1038/s41467-024-45643-y.

Abstract

Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 μΩ⋅cm) at room temperature under 9 T in β-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized β-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.