Phylogenetic Relationships of Avian Cestodes from Brine Shrimp and Congruence with Larval Morphology

Animals (Basel). 2024 Jan 25;14(3):397. doi: 10.3390/ani14030397.

Abstract

Determining molecular markers for parasites provides a useful tool for their identification, particularly for larval stages with few distinguishable diagnostic characters. Avian cestodes play a key role in the food webs and biodiversity of hypersaline wetlands, yet they remain understudied. Using naturally infected Artemia, we identified cestode larvae (cysticercoids), assessed their genetic diversity, and explored phylogenetic relationships in relation to larval morphology and waterbird final hosts. We obtained partial 18S rDNA sequences for 60 cysticercoids of the family Hymenolepidae infecting Artemia spp. from seven localities and three countries (Spain, the USA, and Chile). We present the first DNA sequences for six taxa: Confluaria podicipina, Fimbriarioides sp., Flamingolepis liguloides, Flamingolepis sp. 1, Flamingolepis sp. 2, and Hymenolepis californicus. Intraspecific sequence variation (0.00-0.19% diversity) was lower than intergroup genetic distance (0.7-14.75%). Phylogenetic analysis revealed three main clades: 1-Flamingolepis, 2-Fimbriarioides, 3-Confluaria and Hymenolepis, all of which separated from hymenolepidids from mammals and terrestrial birds. This clear separation among taxa is congruent with previous morphological identification, validating the 18S gene as a useful marker to discriminate at generic/species level. Working with intermediate hosts allows the expansion of knowledge of taxonomic and genetic diversity of cestodes in wildlife, as well as elucidation of their life cycles.

Keywords: Anostraca; Hymenolepididae; Platyhelminthes; molecular phylogeny; phylogeography; ribosomal 18S; waterbirds.