Coherent Transient Localization Mechanism of Interchain Exciton Transport in Regioregular P3HT: A Quantum-Dynamical Study

J Phys Chem Lett. 2024 Feb 22;15(7):1836-1845. doi: 10.1021/acs.jpclett.3c03290. Epub 2024 Feb 9.

Abstract

Transient localization has been proposed as a transport mechanism in organic materials, for both charge carriers and excitons. Here, we characterize a quantum coherent transient localization mechanism using full quantum simulations of an H-aggregated model system representative of regioregular poly(3-hexylthiophene) (rrP3HT). A Frenkel-Holstein Hamiltonian parametrized from first principles is considered, including local high-frequency modes and anharmonic, site-correlated interchain modes. Quantum-dynamical calculations are carried out using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for a 13-site system with 195 vibrational modes, under periodic boundary conditions. It is shown that temporary localization of exciton polarons alternates with resonant transfer driven by interchain modes. While the transport process is mainly determined by exciton-polarons at the low-energy band edge, persistent coupling with the excitonic manifold is observed, giving rise to a nonadiabatic excitonic flux. This elementary transport mechanism remains preserved for limited static disorder and gives way to Anderson localization when the static disorder becomes dominant.