Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattices for THz Generation

Nanomaterials (Basel). 2024 Jan 31;14(3):294. doi: 10.3390/nano14030294.

Abstract

The low-temperature-grown InGaAs (LT-InGaAs) photoconductive antenna has received great attention for the development of highly compact and integrated cheap THz sources. However, the performance of the LT-InGaAs photoconductive antenna is limited by its low resistivity and mobility. The generated radiated power is much weaker compared to the low-temperature-grown GaAs-based photoconductive antennas. This is mainly caused by the low abundance of excess As in LT-InGaAs with the conventional growth mode, which inevitably gives rise to the formation of As precipitate and alloy scattering after annealing. In this paper, the migration-enhanced molecular beam epitaxy technique is developed to grow high-quality (InAs)m/(GaAs)n short-period superlattices with a sharp interface instead of InGaAs on InP substrate. The improved electron mobility and resistivity at room temperature (RT) are found to be 843 cm2/(V·s) and 1648 ohm/sq, respectively, for the (InAs)m/(GaAs)n short-period superlattice. The band-edge photo-excited carrier lifetime is determined to be ~1.2 ps at RT. The calculated photocurrent intensity, obtained by solving the Maxwell wave equation and the coupled drift-diffusion/Poisson equation using the finite element method, is in good agreement with previously reported results. This work may provide a new approach for the material growth towards high-performance THz photoconductive antennas with high radiation power.

Keywords: migration-enhanced epitaxy; photoconductive materials; short-period superlattices.