Intravitreal injection of new adeno-associated viral vector: Enhancing retinoschisin 1 gene transduction in a mouse model of X-linked retinoschisis

Biochem Biophys Rep. 2024 Feb 6:37:101646. doi: 10.1016/j.bbrep.2024.101646. eCollection 2024 Mar.

Abstract

Adeno-associated virus (AAV) vectors have been widely used in therapy to treat hereditary retinal diseases. But its transduction efficiency by intravitreal injection still needs to be improved. In this study, we investigated the transduction efficiency of AAV-DJ (K137R)-GFP in different retinal cells of normal mice, as well as the therapy effection of AAV-DJ (K137R)-Rs1 on retinal function and structure in Rs1-KO mice. The intravitreal injection of AAV-DJ (K137R)-GFP demonstrated that this vector transduced cells in all layers of the retina, including the inner nuclear layer and photoreceptor layer. The intravitreal injection of AAV-DJ (K137R)-Rs1 found that 3 months post-injection of this vector improved retinal function and structure in Rs1-KO mice. Our conclusion is that AAV-DJ (K137R) vector can efficiently and safely penetrate the inner limiting membrane and transduce different layers of retinal cells in the long term, as well as being able to continuously and efficiently express target therapeutic proteins, making it a candidate therapeutic vector for X-linked retinoschisis (XLRS).