Resting-state networks and their relationship with MoCA performance in PD patients

Brain Imaging Behav. 2024 Feb 9. doi: 10.1007/s11682-024-00860-3. Online ahead of print.

Abstract

Although mild cognitive impairment is a common non-motor symptom experienced by individuals with Parkinson's Disease, the changes in intrinsic resting-state networks associated with its onset in Parkinson's remain underexamined. To address the issue, our study sought to examine resting-state network alterations and their association with total performance in the Montreal Cognitive Assessment and its cognitive domains in Parkinson's by means of functional magnetic resonance imaging of 29 Parkinson's patients with normal cognition, 25 Parkinson's patients with mild cognitive impairment, and 13 healthy controls. To contrast the Parkinson's groups with each other and the controls, the images were used to estimate the Z-score coefficient between the regions of interest from the default mode network, the salience network and the central executive network. Our first finding was that default mode and salience network connectivity decreased significantly in Parkinson's patients regardless of their cognitive status. Additionally, default mode network nodes had a negative and salience network nodes a positive correlation with the global assessment in Parkinson's with normal cognition; this inverse relationship of both networks to total score was not found in the group with cognitive impairment. Finally, a positive correlation was found between executive scores and anterior and posterior cortical network connectivity and, in the group with cognitive impairment, between language scores and salience network connectivity. Our results suggest that specific resting-state networks of Parkinson's patients with cognitive impairment differ from those of Parkinson's patients with normal cognition, supporting the evidence that cognitive impairment in Parkinson's Disease displays a differentiated neurodegenerative pattern.

Keywords: Mild cognitive impairment; MoCA; Parkinson’s Disease; Resting state networks; fMRI.