A liquid chromatographic-mass spectrometric procedure for analysis of pentaerythrityl tetranitrate metabolites - Development, validation and application to ovine serum and human plasma samples

J Chromatogr B Analyt Technol Biomed Life Sci. 2024 Feb 15:1234:124028. doi: 10.1016/j.jchromb.2024.124028. Epub 2024 Jan 24.

Abstract

Pentaerythrityl tetranitrate (PETN) is an established drug in the treatment of coronary heart disease and heart failure. It is assumed, that the vasodilative and vasoprotective effects of PETN also have a positive impact on pregnant patients with impaired placental perfusion and studies evaluating the effect of PETN in risk pregnancies have been carried out. In the context of these clinical trials, measuring of serum levels of PETN and its metabolites pentaerythrityl trinitrate (PETriN), pentaerythrityl dinitrate (PEDN), pentaerythrityl mononitrate (PEMN) and pentaerythritol (PE) were required. To evaluate the transfer of PETN and its metabolites (PEXN) from the mother to the fetus using samples from a human clinical trial and animal study, the present work aimed to develop a rapid and simple method to simultaneously analyze PEXN in human and ovine samples. A method employing a rapid and simple liquid-liquid extraction followed by reversed-phase (C18) liquid chromatography coupled to high-resolution mass spectrometry with negative electrospray ionization was developed and validated for the detection of PETN and PEXN in human and ovine samples. PE could only be qualitatively detected at higher concenrations. Method validation requirements, including accuracy, repeatability and intermediate precision were fulfilled in ovine and human samples for all other PEXN with exception PETriN in human samples. The recovery (RE) in ovine samples was 76.7 % ± 12 % for PEMN, 98 % ± 23 % for PEDN, 94 % ± 22 % for PETriN, in human samples RE was 59 % ± 16 % for PEMN, 67 % ± 19 % for PEDN, 71 % ± 17 %. The matrix effects (ME) in ovine samples were 90 % ± 11 % for PEMN, 70 % ± 30 % for PEDN, 107 % ± 17 % for PETriN, in human samples the ME were 93 % ± 13 % for PEMN, 84 % ± 17 % for PEDN, 98 % ± 16 % for PETriN. The limits of quantification (LOQ) in ovine samples were 1.0 ng/mL for PETriN and 0.1 ng/mL for PEMN and PEDN. The LOQs in human samples were 5.0 ng/mL for PETriN and 0.3 ng/mL for PEMN und PEDN. The newly developed method was used to analyze 184 ovine serum samples and 18 human plasma samples. In ovine maternal samples, the highest observed PEDN concentration was 3.5 ng/mL and the highest PEMN concentration was 10 ng/mL, the respective concentrations in fetal serum samples were 4.9 ng/mL for PEDN and 5.4 ng/mL for PEMN. PETriN was only detected in traces in maternal and fetal samples, whereas PETN could not be detected at all. In human maternal samples, the highest concentration for PEDN was 27 ng/mL and for PEMN 150 ng/mL. In umbilical cord plasma, concentrations of 2.3 ng/mL for PEDN and 73 ng/mL for PEMN were detected. Although the PEMN and PEDN concentrations in the human samples were several times higher than in ovine samples, neither PETN nor PETriN signals could be detected. These results demonstrated that the metabolites were transferred from mother to fetus with a slight time delay.

Keywords: Fetal growth retardation; Human; Liquid chromatography- high resolution mass spectrometry; Ovine; Pentaerythrityl tetranitrate; Pregnant.

MeSH terms

  • Animals
  • Female
  • Humans
  • Mass Spectrometry
  • Pentaerythritol Tetranitrate* / blood
  • Placenta
  • Pregnancy
  • Sheep

Substances

  • Pentaerythritol Tetranitrate
  • pentrinitrol