Vanadium Oxide Cathode Coinserted by Ni2+ and NH4+ for High-Performance Aqueous Zinc-Ion Batteries

ACS Appl Mater Interfaces. 2024 Feb 21;16(7):8922-8929. doi: 10.1021/acsami.3c18754. Epub 2024 Feb 8.

Abstract

Vanadium-based oxides have garnered significant attention as cathode materials for aqueous zinc-ion batteries (AZIBs) because of their high theoretical capacity and low cost. However, the limited reaction kinetics and poor long-term cycle stability hinder their widespread application. In this paper, we propose a novel approach by coinserting Ni2+ and NH4+ ions into V2O5·3H2O, i.e., NNVO. Structural characterization shows that the coinsertion of Ni2+ and NH4+ not only extends the interlayer spacing of V2O5·3H2O but also significantly promotes the transport kinetics of Zn2+ because of the synergistic "pillar" effect of Ni2+ and NH4+, as well as the increased oxygen vacancies that effectively lower the energy barrier for Zn2+ insertion. As a result, the AZIBs with an NNVO electrode exhibit a high capacity of 398.1 mAh g-1 (at 1.0 A g-1) and good cycle stability with 89.1% capacity retention even after 2000 cycles at 5.0 A g-1. At the same time, a highly competitive energy density of 262.9 Wh kg-1 is delivered at 382.9 W kg-1. Considering the simple scheme and the resultant high performance, this study may provide a positive attempt to develop high-performance AZIBs.

Keywords: Ni2+/NH4+ coinsertion; aqueous zinc-ion batteries; high capacity; high energy density; long-term cycle stability; vanadium-based oxide cathodes.