Retinoic acid receptor α activity in proximal tubules prevents kidney injury and fibrosis

Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2311803121. doi: 10.1073/pnas.2311803121. Epub 2024 Feb 8.

Abstract

Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, β, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor β1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.

Keywords: fibrosis; kidney disease; mitochondria; proximal tubule; retinoic acid.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Fibrosis
  • Humans
  • Kidney Tubules, Proximal / metabolism
  • Kidney* / metabolism
  • Mice
  • Renal Insufficiency, Chronic* / genetics
  • Renal Insufficiency, Chronic* / prevention & control
  • Retinoic Acid Receptor alpha* / genetics
  • Retinoic Acid Receptor alpha* / metabolism
  • Tretinoin / metabolism
  • Tretinoin / pharmacology

Substances

  • Retinoic Acid Receptor alpha
  • Tretinoin
  • Rara protein, mouse