Effects of non-nutritive sweeteners on growth and intestinal health by regulating hypothalamic RNA profile and ileum microbiota in guinea pigs

J Sci Food Agric. 2024 May;104(7):4342-4353. doi: 10.1002/jsfa.13320. Epub 2024 Feb 8.

Abstract

Background: Non-nutritive sweeteners (NNS) are commonly used in sweetened foods and beverages; however their role in metabolic regulation is still not clear. In this experiment, we used guinea pigs as an animal model to study the effect of NNS on body growth and intestinal health by modifying gut microbiota and hypothalamus-related proteins.

Results: For a 28-day feeding experiment a total of 40 guinea pigs were randomly divided into four groups, one control (CN) group and three treatments, in which three NNS were added to the diet: rebaudioside A (RA, 330 mg kg-1), sodium saccharin (SS, 800 mg kg-1), and sucralose (TGS, 167 mg kg-1), respectively. The TGS group exhibited significantly reduced food consumption in comparison with the CN group (P < 0.05) whereas the RA group showed increased food consumption in comparison with the CN group (P < 0.05). Notably, Taste receptor type 1 subunit 2 (T1R2) expression in the hypothalamus was significantly higher in the RA group than in the CN group (P < 0.05). The mRNA expressions of appetite-stimulated genes arouti-related neuropeptide (AGRP), neuropeptide Y (NPY), and thyroid stimulating hormone (TSHB) were significantly higher than those in the CN group (P < 0.05) but mRNA expressions of appetite-suppressed genes tryptophan hydroxylase 2(THP2) were significantly lower in the TGS group (P < 0.05). Furthermore, NNS in the guinea pig diets (RA, SS, TGS) significantly increased the relative abundance of Muribaculaceae but decreased the relative abundance of Clostridia_vadin BB60 in comparison with the CN group (P < 0.05). We also found that dietary supplementation with RA also significantly altered the relative abundance of Lactobacillus.

Conclusion: Our finding confirmed that dietary supplementation with RA and TGS affected body growth and intestinal health by modulating hypothalamic RNA profiles and ileum microbiota, suggesting that NNS should be included in guinea-pig feeding. © 2024 Society of Chemical Industry.

Keywords: guinea pig; gut microbiota; hypothalamus; non‐nutritive sweetener.

MeSH terms

  • Animals
  • Body Weight
  • Gastrointestinal Microbiome*
  • Guinea Pigs
  • Ileum
  • Non-Nutritive Sweeteners*
  • RNA, Messenger

Substances

  • Non-Nutritive Sweeteners
  • RNA, Messenger