Genetic variability and diversity analysis in Oryza sativa L. genotypes using quantitative traits and SSR markers

Saudi J Biol Sci. 2024 Mar;31(3):103944. doi: 10.1016/j.sjbs.2024.103944. Epub 2024 Jan 28.

Abstract

The present study was aimed at evaluating the genetic variation and population structure in a collection of 22 rice genotypes. Twenty-two rice genotypes were assessed using quantitative traits and SSR molecular markers for genetic variability and genetic diversity. As for genetic diversity, the genotypes were clarified based on twelve quantitative traits. Clustering produced two large groups: the IR70423-169-2-2 variety was in a branch alone due to its long duration, while, the second group included all rest of genotypes and was split up into two sub-groups. The first sub-group included IR67418-131-2-3-3-3, IR67420-206-3-1-3-3, Giza181, Giza182, Sakha104, and P1044-86-5-3-3-2M. However, pedigree played in divided clustering with Giza181 and Giza182, which were belonging to the Indica type and produced from the same parents. SSR markers produced 87 alleles, with a mean of 4.3 alleles per locus, which were detected in 22 rice genotypes. A higher number of alleles were found with primers RM262, RM244, RM3843, RM212, and RM3330. With an overall mean of 0.837, the polymorphic information content values were high for all SSR markers, ranging from a low of 0.397 for M254 to a high of 0.837 for RM244. The dendogram was divided into six groups according to the types of genotypes, with the pedigree playing a major role for the genetic distance. In order to help breeders choose parents and create suitable hybrids to achieve genetic improvement in crops, particularly rice, SSR is a useful technique for analysing genotype diversity and aiding in the genetic fingerprinting of each variety.

Keywords: Cluster analysis; Genetic parameters; Quantitative traits; Rice; SSR markers.