Regional cerebral blood flow and brain atrophy in mild cognitive impairment and Alzheimer's disease

Neurol Lett. 2023 Apr;2(1):16-24. doi: 10.52547/nl.2.1.16. Epub 2023 Apr 24.

Abstract

Objectives: A decline in the regional cerebral blood flow (CBF) is proposed to be one of the initial changes in the Alzheimer's disease process. To date, there are limited data on the correlation between CBF decline and gray matter atrophy in mild cognitive impairment (MCI) and AD patients. to investigate the association between CBF with the gray matter structural parameters such as cortical volume, surface area, and thickness in AD, MCI, and healthy controls (HC).

Methods: Data from three groups of participants including 39 HC, 82 MCI, and 28 AD subjects were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI). One-way ANOVA and linear regression were used to compare data and find a correlation between structural parameters such as cortical volume, surface area, and thickness and CBF which measured by arterial spin labeling (ASL)-MRI.

Results: Our findings revealed a widespread significant correlation between the CBF and structural parameters in temporal, frontal, parietal, occipital, precentral gyrus, pericalcarine cortex, entorhinal cortex, supramarginal gyrus, fusiform, precuneus, and pallidum.

Conclusion: CBF decline may be a useful biomarker for MCI and AD and accurately reflect the structural changes related to AD. According to the present results, CBF decline, as measured by ASL-MRI, is correlated with lower measures of structural parameters in AD responsible regions. It means that CBF decline may reflect AD-associated atrophy across disease progression and is also used as an early biomarker for AD and MCI diagnosis.

Keywords: Alzheimer’s Disease; atrophy; cerebral blood flow; mild cognitive impairment.