Unlocking the hydrocarbon potential: Formation evaluation and petrophysical properties of the upper Triassic Kurra Chine Formation in Sarta Oil Field, Kurdistan Region, Northern Iraq

Heliyon. 2024 Jan 24;10(3):e25173. doi: 10.1016/j.heliyon.2024.e25173. eCollection 2024 Feb 15.

Abstract

The Upper Triassic Kurra Chine Formation in the Sarta oil field of the Kurdistan Region of Northern Iraq has garnered limited attention, notwithstanding the keen interest of numerous international oil companies in drilling wells within this geological epoch. This study endeavors to thoroughly investigate the Formation Evaluation and petrophysical properties of the Kurra Chine Formation in the production oil field, with a specific focus on Sarta Well-2 (S-2). The research incorporates diverse methods for formation evaluation and analysis of petrophysical properties, employing conventional wireline logs such as Gamm-Ray, Neutron, Density, Sonic, Resistivity, Caliper, and Bit size. The research findings reveal that the thickness of the Kurra Chine Formation in S-2 is approximately 380 m. The pay zones of S-2 exhibit an average shale volume of 17 %. The dominant lithology in S-2 comprises Limestone, Dolomite, Anhydrite, Shale, and Sandstone. The average total porosity within the pay zones is determined to be 6 % in S-2. Furthermore, the average effective porosity in reservoir zones of the S-2 is estimated to be 5 %, while the average secondary porosity in these zones is found to be 6 % in S-2. The average permeability in the pay zones of the Sarta well is reported to be 30.6 millidarcy (mD). Additionally, the average water saturation in the pay zones is determined to be 35 % in S-2, whereas the average hydrocarbon saturation is estimated to be 45 % in S-2. This study furnishes comprehensive descriptions and analyses of the formation evaluation and petrophysical properties of the Kurra Chine Formation in Northern Iraq, shedding light on the characteristics and potential of this oil-bearing formation.

Keywords: Formation evaluation; Kurra chine formation; Northern Iraq; Petrophysical properties; Sarta oil field.