Nutritional status of Zombi pea (Vigna vexillata) as influenced by plant density and deblossoming

Sci Rep. 2024 Feb 7;14(1):3189. doi: 10.1038/s41598-024-52736-7.

Abstract

Feeding billions, a healthy and nutritious diet in the era of climate change is a major challenge before plant breeders, geneticists and agronomist. In this context, the continuous search for adaptive and nutritious crops could be a better alternative to combat the problems of hunger and malnutrition. The zombi pea, a nutritious and underutilized leguminous vegetable, is one of such better alternatives to feed billions a nutritious food besides being a potential gene source for breeding abiotic stress resistant varieties. To evaluate its potential as a wonder crop in the tropical and subtropical regions of India, the nutritional status of tubers, pods and pericarp were investigated under different treatments of plant spacings and deblossoming. The experiment was conducted in split plot design with three replications and eight treatments during 2021-2022 in the coastal regions of India. The nutrient profiling in tubers and pericarp of pods in zombi pea revealed higher accumulation of nutrients viz. potassium (K), magnesium (Mg), iron (Fe), manganese (Mn) and zinc (Zn) with blossom retention. The zombi pea tubers reflected significantly high protein accumulation with the increase in plant spacing. The results pertaining to nutrient profiling in the pods of zombi pea indicated that the plant spacing has no significant effect on the accumulation of majority of nutrients under study. The above-mentioned findings are conspicuously novel and valuable. The present study would pave the way for understanding nutritional importance and breeding potential of this orphan crop. The blossom retention renders higher nutrient accumulation in tubers, pods and pericarp of zombi pea. Deblossoming has no significant influence on nutritional profile of this wonder crop but, wider spacing is effective in producing tubers with high protein content.

MeSH terms

  • Crops, Agricultural / genetics
  • Nutritional Status*
  • Pisum sativum / genetics
  • Plant Breeding
  • Vigna* / genetics