Optimizing oocyte electroporation for genetic modification of porcine embryos: Evaluation of the parthenogenetic activation

Theriogenology. 2024 Apr 1:218:126-136. doi: 10.1016/j.theriogenology.2024.01.041. Epub 2024 Feb 1.

Abstract

In reproductive biology, understanding the effects of novel techniques on early embryo development is of paramount importance. To date, the effects of electrical activation on oocytes prior to in vitro fertilization (IVF) are not well understood. The aim of this study was to investigate the effects of oocyte electroporation prior to IVF on embryo development and to differentiate between true embryos and parthenotes by using a TPCN2 knock-out (KO) male to evaluate the presence of the KO allele in the resulting blastocysts. The study consisted of three experiments. The first one examined oocyte electroporation with and without subsequent IVF and found that electroporated oocytes had higher activation rates, increased occurrence of a single pronucleus, and no effect on sperm penetration. Cleavage rates improved in electroporated oocytes, but blastocyst rates remained constant. Genotype analysis revealed a significant increase in the proportion of parthenotes in the electroporated groups compared to the IVF control (30.2 % vs. 6.8 %). The second experiment compared two electroporation media, Opti-MEM and Nuclease-Free Duplex Buffer (DB). DB induced higher oocyte degeneration rates, and lower cleavage and blastocyst rates than Opti-MEM, while parthenogenetic formation remained consistent (60.0 and 48.5 %). In the third experiment, the timing of electroporation relative to IVF was evaluated (1 h before IVF, immediately before IVF and 7 h after IVF). Electroporation immediately before IVF resulted in higher activation rates and different pronuclear proportions compared to the other timing groups. The penetration rate was higher in the immediate electroporation group, and cleavage rate improved in all electroporated groups compared to the control. Blastocyst rates remained constant. Genotyping revealed no significant differences in parthenote proportions among the timing groups, but these were higher than the control (56.25 %, 63.89 %, 51.61 %, 2.44 %, respectively), and showed higher mutation rates when electroporation was performed 7 h after IVF. Overall, this comprehensive study sheds light on the potential of electroporation for creating genetically modified embryos and the importance of media selection and timing in the process, the best media being the Opti-MEM and the more efficient timing regarding mutation rate, 7 h post-IVF, even when the parthenote formation did not differ among electroporated groups. Further studies are needed to reduce the parthenogenetic activation while maintaining high mutation rates to optimize the use of this procedure for the generation of gene-edited pig embryos by oocyte/zygote electroporation.

Keywords: Blastocyst formation; CRISPR/Cas9; Gene editing; IVF; Oocyte activation; Parthenote.

MeSH terms

  • Animals
  • Blastocyst / physiology
  • Electroporation / methods
  • Electroporation / veterinary
  • Embryonic Development / physiology
  • Fertilization in Vitro / veterinary
  • Gene Editing* / veterinary
  • Male
  • Oocytes / physiology
  • Parthenogenesis
  • Semen*
  • Swine