Collapsing behavior of spark-induced cavitation bubble in rigid tube

Ultrason Sonochem. 2024 Feb:103:106791. doi: 10.1016/j.ultsonch.2024.106791. Epub 2024 Feb 3.

Abstract

The phenomenon of cavitation within tubes is a common scenario in the fields of medicine and industry. This paper focuses on the effects of rigid circular tube length, diameter and the distance of bubble - tube port on the behavior of bubble in tube. The low-voltage discharge technique was utilized to induce a cavitation bubble in deionized water. The effects of rigid tube lengths, diameters, and bubble-tube port distances on the morphology of bubbles are observed using high-speed camera. It has been found that as the length of the rigid tube increases, so does the period, and this effect is more pronounced in tubes with smaller diameters. Conversely, the cavitation bubble period decreased and then stabilized as the tube diameter increased, the ratio of tube radius and the bubble radius exceeds 4.8, the period of bubble in tube is similar to that of bubble in free field. Further analysis of the influence of tube characteristics on microjets reveals that a pair of oppositely microjets were formed along the tube axis by the bubble near the midpoint of the tube axis. Moreover, when the non-dimensional tube length η < 3.5, the increase tube diameter results in a decrease microjet velocity. It has also been observed that as the bubble gradually approaches the interior of the tube, the velocity of microjets directed inward decreases. Additionally, the smaller the diameter of the tube, the greater the bubble-tube port distance required for the microjets to reach the same level of velocity as bubble near the center of the tube axis. These findings hold theoretical implications for improvement of targeted drug delivery efficiency in medicine and enhance the operational efficiency of inertial micropumps in industries.

Keywords: Bubbles dynamics; Cavitation bubble; Microjets; Tube.