Noncanonical interaction with microtubules via the N-terminal nonmotor domain is critical for the functions of a bidirectional kinesin

Sci Adv. 2024 Feb 9;10(6):eadi1367. doi: 10.1126/sciadv.adi1367. Epub 2024 Feb 7.

Abstract

Several kinesin-5 motors (kinesin-5s) exhibit bidirectional motility. The mechanism of such motility remains unknown. Bidirectional kinesin-5s share a long N-terminal nonmotor domain (NTnmd), absent in exclusively plus-end-directed kinesins. Here, we combined in vivo, in vitro, and cryo-electron microscopy (cryo-EM) studies to examine the impact of NTnmd mutations on the motor functions of the bidirectional kinesin-5, Cin8. We found that NTnmd deletion mutants exhibited cell viability and spindle localization defects. Using cryo-EM, we examined the structure of a microtubule (MT)-bound motor domain of Cin8, containing part of its NTnmd. Modeling and molecular dynamic simulations based on the cryo-EM map suggested that the NTnmd of Cin8 interacts with the C-terminal tail of β-tubulin. In vitro experiments on subtilisin-treated MTs confirmed this notion. Last, we showed that NTnmd mutants are defective in plus-end-directed motility in single-molecule and antiparallel MT sliding assays. These findings demonstrate that the NTnmd, common to bidirectional kinesin-5s, is critical for their bidirectional motility and intracellular functions.

MeSH terms

  • Cryoelectron Microscopy
  • Kinesins* / genetics
  • Microtubules / chemistry
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins* / genetics

Substances

  • Kinesins
  • Saccharomyces cerevisiae Proteins