Effective Anticancer Potential of a New Sulfonamide as a Carbonic Anhydrase IX Inhibitor Against Aggressive Tumors

ChemMedChem. 2024 May 2;19(9):e202300680. doi: 10.1002/cmdc.202300680. Epub 2024 Feb 27.

Abstract

This study examines efficiency of a newly synthesized sulfonamide derivative 2-bromo-N-(4-sulfamoylphenyl)propanamide (MMH-1) on the inhibition of Carbonic Anhydrase IX (CA IX), which is overexpressed in many solid tumors including breast cancer. The inhibitory potential of MMH-1 compound against its four major isoforms, including cytosolic isoforms hCA I and II, as well as tumor-associated membrane-bound isoforms hCA IX and XII, was evaluated. To this context, the cytotoxic effect of MMH-1 on cancer and normal cells was tested and found to selectively affect MDA-MB-231 cells. MMH-1 reduced cell proliferation by holding cells in the G0/G1 phase (72 %) and slowed the cells' wound healing capacity. MMH-1 inhibited CA IX under both hypoxic and normoxic conditions and altered the morphology of triple negative breast cancer cells. In MDA-MB-231 cells, inhibition of CA IX was accompanied by a decrease in extracellular pH acidity (7.2), disruption of mitochondrial membrane integrity (80 %), an increase in reactive oxygen levels (25 %), and the triggering of apoptosis (40 %). In addition, the caspase cascade (CASP-3, -8, -9) was activated in MDA-MB-231 cells, triggering both the extrinsic and intrinsic apoptotic pathways. The expression of pro-apoptotic regulatory proteins (Bad, Bax, Bid, Bim, Cyt-c, Fas, FasL, TNF-a, TNF-R1, HTRA, SMAC, Casp-3, -8, P21, P27, and P53) was increased, while the expression of anti-apoptotic proteins, apoptosis inhibitor proteins (IAPs), and heat shock proteins (HSPs) (Bcl-2, Bcl-w, cIAP-2, HSP27, HSP60, HSP70, Survivin, Livin, and XIAP) was decreased. These results propose that the MMH-1 compound could triggers apoptosis in MDA-MB-231 cells via the pH/MMP/ROS pathway through the inhibition of CA IX. This compound is thought to have high potential and promising anticancer properties in the treatment of aggressive tumors.

Keywords: Apoptosis; CA IX; MDA-MB-231; MMH-1; Sulfonamide; Triple-Breast Cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigens, Neoplasm* / metabolism
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Apoptosis* / drug effects
  • Carbonic Anhydrase IX* / antagonists & inhibitors
  • Carbonic Anhydrase IX* / metabolism
  • Carbonic Anhydrase Inhibitors* / chemical synthesis
  • Carbonic Anhydrase Inhibitors* / chemistry
  • Carbonic Anhydrase Inhibitors* / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation* / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor*
  • Humans
  • Molecular Structure
  • Structure-Activity Relationship
  • Sulfonamides* / chemical synthesis
  • Sulfonamides* / chemistry
  • Sulfonamides* / pharmacology

Substances

  • Carbonic Anhydrase IX
  • Sulfonamides
  • Carbonic Anhydrase Inhibitors
  • Antineoplastic Agents
  • CA9 protein, human
  • Antigens, Neoplasm