A prognostic metabolism-related gene signature associated with the tumor immune microenvironment in neuroblastoma

Am J Cancer Res. 2024 Jan 15;14(1):253-273. doi: 10.62347/IDXM4018. eCollection 2024.

Abstract

Neuroblastoma (NB) is the most prevalent malignant solid tumor in children. Tumor metabolism, including lipid, amino acid, and glucose metabolism, is intricately linked to the genesis and progression of tumors. This study aimed to establish a prognostic gene signature for NB patients, based on metabolism-related genes, and to investigate a treatment approach that could enhance the survival rate of high-risk NB patients. From the NB dataset GSE49710, we identified metabolism-related gene markers utilizing the "limma" R package and univariate Cox analysis combined with least absolute shrinkage and selection operator (LASSO) regression analysis. We explored the correlation between these gene markers and the overall survival of NB patients. Gene set enrichment analysis (GSEA) and single-sample GSEA algorithms were used to assess the differences in metabolism and immune status. Furthermore, we examined the association between metabolic subgroups and drug responsiveness. Concurrently, data downloaded from TARGET and MTAB were used for external verification. Using multicolor immunofluorescence and immunohistochemistry, we investigated the relationship between the lipid metabolism-related gene ELOVL6 with both the International Neuroblastoma Staging System classification of NB and survival rate. Finally, we explored the effect of high ELOVL6 expression on the immune microenvironment in NB using flow cytometry. We identified an eight-gene signature comprising metabolism-related genes in NB: ELOVL6, OSBPL9, RPL27A, HSD17B3, ACHE, AKR1C1, PIK3R1, and EPHX2. This panel effectively predicted disease-free survival, and was validated using an internal dataset from GSE49710 and two external datasets from the TARGET and MTAB databases. Moreover, our findings confirmed that ELOVL6 fosters an immunosuppressive microenvironment and contributes to the malignant progression in NB. The eight-gene signature is significant in predicting the prognosis of NB, effectively classifying patients into high- and low-risk groups. This classification may guide the development of innovative treatment strategies for these patients. Notably, the signature gene ELOVL6 markedly encourages an immunosuppressive microenvironment and malignant progression in NB.

Keywords: ELOVL6; Neuroblastoma; immune microenvironment; metabolism-related genes; prognostic model.