N-Methyl-2-{3-methyl-2-[(2 Z)-pent-2-en-1-yl]cyclo-pent-2-en-1-yl-idene}hydrazinecarbo-thio-amide

IUCrdata. 2024 Jan 9;9(Pt 1):x240013. doi: 10.1107/S2414314624000130. eCollection 2024 Jan.

Abstract

The equimolar and hydro-chloric acid-catalysed reaction between cis-jasmone and 4-methyl-thio-semicarbazide in ethano-lic solution yields the title compound, C13H21N3S (common name: cis-jasmone 4-methyl-thio-semicarbazone). Two mol-ecules with all atoms in general positions are present in the asymmetric unit. In one of them, the carbon chain is disordered [site occupancy ratio = 0.821 (3):0.179 (3)]. The thio-semicarbazone entities [N-N-C(=S)-N] are approximately planar, with the maximum deviation from the mean plane through the selected atoms being -0.0115 (16) Å (r.m.s.d. = 0.0078 Å) for the non-disordered mol-ecule and 0.0052 (14) Å (r.m.s.d. = 0.0031 Å) for the disordered one. The mol-ecules are not planar, since the jasmone groups have a chain with sp 3-hybridized carbon atoms and, in addition, the thio-semicarbazone fragments are attached to the respective carbon five-membered rings and the dihedral angles between them for each mol-ecule amount to 8.9 (1) and 6.3 (1)°. In the crystal, the mol-ecules are connected through pairs of N-H⋯S and C-H⋯S inter-actions into crystallographically independent centrosymmetric dimers, in which rings of graph-set motifs R 2 2(8) and R 2 1(7) are observed. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.6%), H⋯S/S⋯H (16.7%), H⋯C/C⋯H (7.5%) and H⋯N/N⋯H (4.9%) inter-actions [considering the two crystallographically independent mol-ecules and only the disordered atoms with the highest s.o.f. for the evaluation].

Keywords: Hirshfeld analysis; centrosymmetric dimers; cis-jasmone; crystal structure; methyl­thio­semicarbazone derivative; thio­semicarbazone.

Grants and funding

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.