Pickering Emulsions of Thermotropic Liquid Crystals Stabilized by Amphiphilic Gold Nanoparticles

Langmuir. 2024 Feb 6. doi: 10.1021/acs.langmuir.3c03940. Online ahead of print.

Abstract

We report emulsions of thermotropic liquid crystals (LCs) in water that are stabilized using amphiphilic gold nanoparticles (AuNPs) and retain their ability to respond to aqueous analytes for extended periods (e.g., up to 1 year after preparation). These LC emulsions exhibit exceptional colloidal stability that results from the adsorption of AuNPs that are functionalized with thiol-terminated poly(ethylene glycol) (PEG-thiol) and hexadecanethiol (C16-thiol) to LC droplet interfaces. These stabilized LC emulsions respond to the presence of model anionic (SDS), cationic (C12TAB), and nonionic (C12E4) surfactants in the surrounding aqueous media, as evidenced by ordering transitions in the LC droplets that can be readily observed using polarized light microscopy. Our results reveal significant differences in the sensitivity of the stabilized LC droplets toward each of these analytes. In particular, these stabilized droplets can detect the cationic C12TAB at concentrations that are lower than those required for bare LC droplets under similar experimental conditions (0.5 and 2 mM, respectively). These results demonstrate an enhanced sensitivity of the LC toward C12TAB when the PEG/C16-thiol-coated AuNPs are adsorbed at LC droplet interfaces. In contrast, the concentrations of SDS required to observe optical transformations in the stabilized LC droplets are higher than those required for the bare LC droplets, suggesting that the presence of the PEG/C16-thiol AuNPs reduces the sensitivity of the LC toward this analyte. When combined, our results show that this Pickering stabilization approach using amphiphilic AuNPs as stabilizing agents for LC-in-water emulsions provides a promising platform for developing LC droplet-based optical sensors with long-term colloidal stability as well as opportunities to tune the sensitivity and selectivity of the response to target aqueous analytes.