QbD-Based Stability-Indicating RP-HPLC Method Development and Validation for the Estimation of Favipiravir-An Eco-Friendly Approach

J AOAC Int. 2024 May 2;107(3):377-386. doi: 10.1093/jaoacint/qsae009.

Abstract

Background: Analytical quality by design (AQbD) affords a systematic scaffolding to triumph a continuously validated, robust assay as well as life cycle management. The resuscitative repurposed drug favipiravir, an oral drug approved for reemerging pandemic influenza in Japan in 2014, is used for the treatment of life-threatening pathogens such as Ebola, Lassa virus, and currently COVID-19. Favipiravir is gaining a great deal of medical importance due to its pharmaceutical applications.

Objective: To develop and validate a risk-based stability-indicating RP-HPLC method employing an AQbD approach using Central Composite Design (Design Expert Software 13.0) for the estimation of favipiravir.

Method: The Quality Target Product Profile optimized were flow rate and mobile phase composition, thus assessing the critical analytical attributes (retention time, tailing factor, and number of theoretical plates) as the constraints of method robustness. The proposed technique was optimized with a C18 (150 × 4.6 mm, 5 µm) column and 0.1% orthophosphoric acid buffer-acetonitrile (50:50, v/v) as the mobile phase at a flow rate of 1 mL/min using diode-array detector (230 nm) eluted favipiravir at 2.3 min.

Results: The optimized method validated as per ICH guideline Q2 (R1) was found to be eco-friendly, simple, precise (RSD 0.0051-1.2%), accurate (99.86-100.22%), linear (25-150 µg/mL), rugged (RSD 0.70%), and robust (RSD 0.6-1.6%) with a limit of detection and limit of quantitation of 1.140 µg/mL and 4.424 µg/mL, respectively.

Conclusion: Forced degradation studies (acidic, alkaline, thermal, photolytic, and oxidative conditions) revealed the suitability of the AQbD method for the analysis of favipiravir in tablet formulation.The developed and validated AQbD method is less time consuming and can be used in the industry for routine quality control/analysis of bulk drug and marketed Favipiravir products.

Highlights: A robust Design of Experiment enhanced stability-indicating analytical method was developed and validated for the estimation of favipiravir. Furthermore, the contemporary method would aid in extending the analysis of favipiravir in other formulations.

Publication types

  • Validation Study

MeSH terms

  • Amides* / analysis
  • Amides* / chemistry
  • Antiviral Agents / analysis
  • Antiviral Agents / chemistry
  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Reverse-Phase / methods
  • Drug Stability*
  • Limit of Detection
  • Pyrazines* / analysis
  • Pyrazines* / chemistry

Substances

  • favipiravir
  • Pyrazines
  • Amides
  • Antiviral Agents