Optimizing laser cladding powder injection parameters to shape bioactive glass nano-coated zirconium oxide for biomedical application

Heliyon. 2024 Jan 26;10(3):e25277. doi: 10.1016/j.heliyon.2024.e25277. eCollection 2024 Feb 15.

Abstract

Human body is highly sensitive and repairing often incurs pain and expenses. Strength of the materials degraded by poor joint (either weld or link). New material technology is proposed many biomaterials for repairing bone and tissue and also many bio-implantation applications. Especially bioactive material like bioactive glass is used for biomedical applications for replacement and repairing organs in human body. This research work focuses on suggesting material of S53P4 bioactive glass Nano-coated Zirconium dioxide for manufacturing artificial knee implant for fixing in human body. The substrate of Zirconium dioxide is Nano-coated with S53P4 bioactive glass by means of laser cladding process. The laser cladding process parameters were optimized by Taguchi method to enhance mechanical properties like compressive strength, wear resistance and microhardness of Zirconium dioxide implant material. The key parameters like Laser Power (1 kW, 2 kW, 3 kW and 4 kW), beam diameter (2 mm, 3 mm, 4 mm and 5 mm), powder feed rate (10 g/min, 15 g/min, 20 g/min and 25 g/min) and scanning speed (3 mm/s, 4 mm/s, 5 mm/s and 6 mm/s) were considered. The optimal parameters result the higher compressive strength and microhardness are obtained as 373 MPa and 898.37 HV0.2 and minimum wear volume is attained as 0.148 mm3 in the Nano-coated implant material.

Keywords: Biomaterials; Biomedical; Compressive strength; Laser power; Microhardness; Taguchi method; Wear.