Comparison of Sysmex XN-V body fluid mode and deep-learning-based quantification with manual techniques for total nucleated cell count and differential count for equine bronchoalveolar lavage samples

BMC Vet Res. 2024 Feb 5;20(1):48. doi: 10.1186/s12917-024-03884-5.

Abstract

Background: Bronchoalveolar lavage (BAL) is a diagnostic method for the assessment of the lower respiratory airway health status in horses. Differential cell count and sometimes also total nucleated cell count (TNCC) are routinely measured by time-consuming manual methods, while faster automated methods exist. The aims of this study were to compare: 1) the Sysmex XN-V body fluid (BF) mode with the manual techniques for TNCC and two-part differential into mononuclear and polymorphonuclear cells; 2) the Olympus VS200 slide scanner and software generated deep-learning-based algorithm with manual techniques for four-part differential cell count into alveolar macrophages, lymphocytes, neutrophils, and mast cells. The methods were compared in 69 clinical BAL samples.

Results: Incorrect gating by the Sysmex BF mode was observed on many scattergrams, therefore all samples were reanalyzed with manually set gates. For the TNCC, a proportional and systematic bias with a correlation of r = 0.79 was seen when comparing the Sysmex BF mode with manual methods. For the two-part differential count, a mild constant and proportional bias and a very small mean difference with moderate limits of agreement with a correlation of r = 0.84 and 0.83 were seen when comparing the Sysmex BF mode with manual methods. The Sysmex BF mode classified significantly more samples as abnormal based on the TNCC and the two-part differential compared to the manual method. When comparing the Olympus VS200 deep-learning-based algorithm with manual methods for the four-part differential cell count, a very small bias in the regression analysis and a very small mean difference in the difference plot, as well as a correlation of r = 0.85 to 0.92 were observed for all four cell categories. The Olympus VS200 deep-learning-based algorithm also showed better precision than manual methods for the four-part differential cell count, especially with an increasing number of analyzed cells.

Conclusions: The Sysmex XN-V BF mode can be used for TNCC and two-part differential count measurements after reanalyzing the samples with manually set gates. The Olympus VS200 deep-learning-based algorithm correlates well with the manual methods, while showing better precision and can be used for a four-part differential cell count.

Keywords: Artificial intelligence; Body fluid mode; Bronchoalveolar lavage; Deep-learning; Differential count; Equine; Regating; Sysmex; Total nucleated cell count.

MeSH terms

  • Algorithms
  • Animals
  • Body Fluids*
  • Cell Count / veterinary
  • Deep Learning*
  • Horses
  • Leukocyte Count / veterinary
  • Lymphocytes
  • Reproducibility of Results