Ultrasonic imaging of delamination in thick CFRP laminates using an energy-compensation reverse time migration method

Ultrasonics. 2024 Mar:138:107253. doi: 10.1016/j.ultras.2024.107253. Epub 2024 Jan 28.

Abstract

In ultrasonic reflection method, the precision of defect detection in thick carbon fiber reinforced plastics (CFRP) is compromised by acoustic energy attenuation. An energy-compensation reverse time migration (ECRTM) method is proposed to identify multiple defects accurately. Forward and backward wavefields are formed using the finite element method within an anisotropic acoustic model based on the Christoffel equation and Bond transformation. To enhance the imaging quality of CFRP laminates, a novel cross-correlation imaging condition is introduced to compensate for energy dissipation caused by geometric diffusion and variations of the far-field radiation intensity at the emitter with the propagation direction. Employing ultrasonic detection technology with a multi-element array, numerical and experimental research on defect imaging was conducted, considering delamination with various sizes and positions in a multidirectional CFRP laminate. In comparison to other ultrasonic imaging methods, the near-surface artifacts in RTM images are mitigated by the far-field radiation directivity factor, while the deep information is enhanced by the geometric diffusion compensation factor in the ECRTM images. As a result, the precise position of delamination in CFRP laminates is achievable, demonstrating superior imaging capabilities, especially for deep delamination.

Keywords: Carbon fiber reinforced plastics; Delamination; Reverse time migration; Ultrasonic energy compensation; Ultrasonic imaging.