Phosphorescent fac-Bis(triarylisocyanide) W(0) and Mo(0) Complexes

Inorg Chem. 2024 Feb 19;63(7):3267-3282. doi: 10.1021/acs.inorgchem.3c03557. Epub 2024 Feb 2.

Abstract

Homoleptic W(0) and Mo(0) complexes containing bis(triarylisocyanide) ligands with bulky substituents were synthesized and spectroscopically characterized. Crystallographically determined structures revealed that these complexes are hourglass-like in shape with the tridentate ligands adopting a facial coordination mode to the metal center. These complexes luminesce in fluid solutions and in the solid state. Typically in toluene at 298 K, the two W(0) complexes display the emission maximum (lifetime and quantum yield) at 591 nm (0.83 μs and 0.35) and 628 nm (1.04 μs and 0.39), and similarly, the two Mo(0) complexes display it at 575 nm (0.54 μs and 0.15) and 617 nm (0.56 μs and 0.23). DFT and TDDFT calculations indicated that the low-energy absorption bands of the W(0) and Mo(0) complexes could be metal-to-ligand charge transfer (MLCT) transitions in nature. These complexes exhibited a reversible M+/0 redox couple at -0.70 and -0.63 V vs Fc+/0 for the W(0) complexes and -0.86 and -0.67 V for the Mo(0) complexes. The excited-state reduction potentials were hence estimated to be -2.91 and -2.74 V vs Fc+/0 for the W(0) complexes and -3.10 and -2.81 V vs Fc+/0 for the Mo(0) complexes, indicating that they are potentially strong photoreductants.