Multiparametric MR-based feature fusion radiomics combined with ADC maps-based tumor proliferative burden in distinguishing TNBC versus non-TNBC

Phys Med Biol. 2024 Feb 28;69(5). doi: 10.1088/1361-6560/ad25c0.

Abstract

Objective.To investigate the incremental value of quantitative stratified apparent diffusion coefficient (ADC) defined tumor habitats for differentiating triple negative breast cancer (TNBC) from non-TNBC on multiparametric MRI (mpMRI) based feature-fusion radiomics (RFF) model.Approach.466 breast cancer patients (54 TNBC, 412 non-TNBC) who underwent routine breast MRIs in our hospital were retrospectively analyzed. Radiomics features were extracted from whole tumor on T2WI, diffusion-weighted imaging, ADC maps and the 2nd phase of dynamic contrast-enhanced MRI. Four models including the RFFmodel (fused features from all MRI sequences), RADCmodel (ADC radiomics feature), StratifiedADCmodel (tumor habitas defined on stratified ADC parameters) and combinational RFF-StratifiedADCmodel were constructed to distinguish TNBC versus non-TNBC. All cases were randomly divided into a training (n= 337) and test set (n= 129). The four competing models were validated using the area under the curve (AUC), sensitivity, specificity and accuracy.Main results.Both the RFFand StratifiedADCmodels demonstrated good performance in distinguishing TNBC from non-TNBC, with best AUCs of 0.818 and 0.773 in the training and test sets. StratifiedADCmodel revealed significant different tumor habitats (necrosis/cysts habitat, chaotic habitat or proliferative tumor core) between TNBC and non-TNBC with its top three discriminative parameters (p <0.05). The integrated RFF-StratifiedADCmodel demonstrated superior accuracy over the other three models, with higher AUCs of 0.832 and 0.784 in the training and test set, respectively (p <0.05).Significance.The RFF-StratifiedADCmodel through integrating various tumor habitats' information from whole-tumor ADC maps-based StratifiedADCmodel and radiomics information from mpMRI-based RFFmodel, exhibits tremendous promise for identifying TNBC.

Keywords: habitat; molecular receptor; multiparametric magnetic resonance imaging; radiomics; triple negative breast cancer.

MeSH terms

  • Diffusion Magnetic Resonance Imaging / methods
  • Humans
  • Magnetic Resonance Imaging / methods
  • Radiomics
  • Retrospective Studies
  • Triple Negative Breast Neoplasms* / diagnostic imaging