Mapping crown rust resistance in the oat diploid accession PI 258731 (Avena strigosa)

PLoS One. 2024 Feb 2;19(2):e0295006. doi: 10.1371/journal.pone.0295006. eCollection 2024.

Abstract

Oat crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks. (Pca), is a major biotic impediment to global oat production. Crown rust resistance has been described in oat diploid species A. strigosa accession PI 258731 and resistance from this accession has been successfully introgressed into hexaploid A. sativa germplasm. The current study focuses on 1) mapping the location of QTL containing resistance and evaluating the number of quantitative trait loci (QTL) conditioning resistance in PI 258731; 2) understanding the relationship between the original genomic location in A. strigosa and the location of the introgression in the A. sativa genome; 3) identifying molecular markers tightly linked with PI 258731 resistance loci that could be used for marker assisted selection and detection of this resistance in diverse A. strigosa accessions. To achieve this, A. strigosa accessions, PI 258731 and PI 573582 were crossed to produce 168 F5:6 recombinant inbred lines (RILs) through single seed descent. Parents and RILs were genotyped with the 6K Illumina SNP array which generated 168 segregating SNPs. Seedling reactions to two isolates of Pca (races TTTG, QTRG) were conditioned by two genes (0.6 cM apart) in this population. Linkage mapping placed these two resistant loci to 7.7 (QTRG) to 8 (TTTG) cM region on LG7. Field reaction data was used for QTL analysis and the results of interval mapping (MIM) revealed a major QTL (QPc.FD-AS-AA4) for field resistance. SNP marker assays were developed and tested in 125 diverse A. strigosa accessions that were rated for crown rust resistance in Baton Rouge, LA and Gainesville, FL and as seedlings against races TTTG and QTRG. Our data proposed SNP marker GMI_ES17_c6425_188 as a candidate for use in marker-assisted selection, in addition to the marker GMI_ES02_c37788_255 suggested by Rine's group, which provides an additional tool in facilitating the utilization of this gene in oat breeding programs.

MeSH terms

  • Avena* / genetics
  • Basidiomycota*
  • Diploidy
  • Disease Resistance / genetics
  • Plant Breeding
  • Plant Diseases / genetics
  • Seedlings / genetics

Grants and funding

The research at USDA-ARS in Aberdeen, ID was supported with base fund Project No.: 2050-21000-034-000D.