Impact of Schistosoma sp., Infection on Biological, Feeding, Physiological, Histological, and Genotoxicological Aspects of Biomphalaria alexandrina and Bulinus truncatus Snails

Acta Parasitol. 2024 Mar;69(1):648-663. doi: 10.1007/s11686-023-00760-4. Epub 2024 Feb 1.

Abstract

Background: Trematode infections of the genus Schistosoma can induce physiological and behavioral changes in intermediate snail hosts. This is because the parasite consumes essential resources necessary for the host's survival, prompting hosts to adapt their behavior to maintain some level of fitness before parasite-induced mortality occurs.

Methods: In this study, the reproductive and biochemical parameters of Biomphalaria alexandrina and Bulinus truncatus were examined during the cercareal shedding stage of infection with Schistosoma mansoni and Schistosoma haematobium, respectively, compared with controls.

Results: The study revealed an infection rate of 34.7% for S. mansoni and 30.4% for S. haematobium. In B. alexandrina infected with S. mansoni, a survival rate of 65.2% was recorded, along with a mean prepatent period of 30.3 ± 1.41 days, a mean shedding duration of 14.2 ± 0.16 days, and a mean lifespan of 44.1 ± 0.24 days. Meanwhile, in B. truncatus infected with S. haematobium, a survival rate of 56.4% was observed, with a mean prepatent period of 44.3 ± 1.41 days, a mean shedding duration of 22.6 ± 2.7 days, and a mean lifespan of 66.9 ± 1.6 days. Feeding increased in both infected species of snails, while the net reproductive rate (Ro) of the infected snails decreased. Total antioxidant (TAO) and lipid peroxidation activity increased in the two infected snail species during shedding, while Glutathione-S-transferase levels decreased. Lipid peroxidase activity and nitrogen oxide levels significantly decreased in infected B. alexandrina and increased in infected Bulinus. Steroid hormone levels were elevated in infected Biomphalaria, whereas they were reduced in infected Bulinus. Comet assay parameters showed an increase in the two infected genera after infection compared to control snails, indicating genotoxic damage and histopathological damage was observed.

Conclusions: These findings demonstrate that infection with larva species diverse biochemical, hormonal, genotoxic, and histopathological changes in the tissues responsible for fecundity and reproduction in B. alexandrina and B. truncates comparing with controls.

Keywords: Biomphalaria alexandrina; Bulinus truncatus; Schistosoma haematobium; Schistosoma mansoni; Feeding; Genotoxic effect.

MeSH terms

  • Animals
  • Biomphalaria* / parasitology
  • Bulinus* / parasitology
  • Cercaria / physiology
  • Feeding Behavior
  • Host-Parasite Interactions*
  • Reproduction
  • Schistosoma haematobium / genetics
  • Schistosoma haematobium / physiology
  • Schistosoma mansoni* / physiology