Acrylamide exposure induces growth retardation, neurotoxicity, stress, and immune/antioxidant disruption in Nile tilapia (Oreochromis niloticus): The alleviative effects of Chlorella vulgaris diets

Fish Shellfish Immunol. 2024 Mar:146:109411. doi: 10.1016/j.fsi.2024.109411. Epub 2024 Jan 30.

Abstract

This study looked at the toxic impacts of water-born acrylamide (ACR) on Nile tilapia (Oreochromis niloticus) in terms of behaviors, growth, immune/antioxidant parameters and their regulating genes, biochemical indices, tissue architecture, and resistance to Aeromonas hydrophila. As well as the probable ameliorative effect of Chlorella vulgaris (CV) microalgae as a feed additive against ACR exposure was studied. The 96-h lethal concentration 50 of ACR was investigated and found to be 34.67 mg/L for O. niloticus. For the chronic exposure study, a total of 180 healthy O. niloticus (24.33 ± 0.03 g) were allocated into four groups in tri-replicates (15 fish/replicate), C (control) and ACR groups were fed a basal diet and exposed to 0 and 1/10 of 96-h LC50 of ACR (3.46 mg/L), respectively. ACR+ CV5 and ACR+ CV10 groups were fed basal diets with 5 % and 10 % CV supplements, respectively and exposed to 1/10 of 96-h LC50 of ACR for 60 days. After the exposure trial (60 days) the experimental groups were challenged with A. hydrophila. The findings demonstrated that ACR exposure induced growth retardation (P˂0.01) (lower final body weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, final body length, and condition factor as well as higher feed conversion ratio). A substantial decrease in the immune/antioxidant parameters (P˂0.05) (lysozyme, serum bactericidal activity %, superoxide dismutase, and reduced glutathione) and neurotransmitter (acetylcholine esterase) (P˂0.01) was noticed with ACR exposure. A substantial increase (P˂0.01) in the serum levels of hepato-renal indicators, lipid peroxidation biomarker, and cortisol was noticed as a result of ACR exposure. ACR exposure resulted in up-regulation (P˂0.05) of the pro-inflammatory cytokines and down-regulation (P˂0.05) of the antioxidant-related gene expression. Furthermore, the hepatic, renal, brain, and splenic tissues were badly affected by ACR exposure. ACR-exposed fish were more sensitive to A. hydrophila infection and recorded the lowest survival rate (P˂0.01). Feeding the ACR-exposed fish with CV diets significantly improved the growth and immune/antioxidant status, as well as modulating the hepatorenal functions, stress, and neurotransmitter level compared to the exposed-non fed fish. In addition, modulation of the pro-inflammatory and antioxidant-related gene expression was noticed by CV supplementation. Dietary CV improved the tissue architecture and increased the resistance to A. hydrophila challenge in the ACR-exposed fish. Noteworthy, the inclusion of 10 % CV produced better results than 5 %. Overall, CV diets could be added as a feed supplement in the O. niloticus diet to boost the fish's health, productivity, and resistance to A. hydrophila challenge during ACR exposure.

Keywords: Acrylamide; Bacterial resistance; Microalgae supplement; Oreochromis niloticus; mRNA transcription.

MeSH terms

  • Acrylamides
  • Animal Feed / analysis
  • Animals
  • Antioxidants / metabolism
  • Body Weight
  • Chlorella vulgaris*
  • Cichlids*
  • Diet / veterinary
  • Dietary Supplements
  • Disease Resistance
  • Fish Diseases* / chemically induced
  • Gram-Negative Bacterial Infections* / veterinary
  • Growth Disorders
  • Neurotransmitter Agents / metabolism

Substances

  • Antioxidants
  • Neurotransmitter Agents
  • Acrylamides