PPAR-gamma influences developmental competence and trophectoderm lineage specification in bovine embryos

Reproduction. 2024 Jan 31;167(2):e230334. doi: 10.1530/REP-23-0334. Print 2024 Feb 1.

Abstract

In brief: Peroxisome proliferator-activated receptor gamma (PPARG) is a critical regulator of placental function, but earlier roles in preimplantation embryo development and embryonic origins of placental formation have not been established. Results herein demonstrate that PPARG responds to pharmacologic stimulation in the bovine preimplantation embryo and influences blastocyst development, cell lineage specification, and transcripts important for placental function.

Abstract: Peroxisome proliferator-activated receptor gamma (PPARG) is a key regulator of metabolism with conserved roles that are indispensable for placental function, suggesting previously unidentified and important roles in preimplantation embryo development. Herein, we report the functional characterization of bovine PPARG to reveal expression beginning on D6 of development with nuclear and ubiquitous patterns. Day 6 PPARG+ embryos have fewer total cells and a lower proportion of trophectoderm cells compared to PPARG- embryos (P < 0.05). Coculture with a PPARG agonist, rosiglitazone (Ros), or antagonist GW9662 (GW), decreases blastocyst development (P < 0.01). Day 7.5 (D7.5) developmentally delayed embryos exposed to Ros express lower transcript abundance of key genes important for placental development and cell lineage formation (CDX2, RXRB, SP1, TFAP2C, SIRT1, and PTEN). In contrast, Ros does not alter transcript abundance in D7.5 blastocysts, but GW treatment lowers RXRA, RXRB, SP1, and NFKB1 expression. Knockout of embryonic PPARG does not alter blastocyst formation and hatching ability but decreases total cell number in D7.5 blastocysts. The decreased embryo development response and affected pathways following targeted pharmacological perturbation vs embryonic knockout of PPARG suggest roles of both maternal and embryonic origins. These data reveal regulatory contributions of PPARG in preimplantation embryo development, cell lineage formation, and regulation of transcripts associated with placental function.

MeSH terms

  • Animals
  • Blastocyst / metabolism
  • Cattle
  • Embryonic Development / physiology
  • Female
  • Gene Expression Regulation, Developmental
  • PPAR gamma* / genetics
  • PPAR gamma* / metabolism
  • Placenta* / metabolism
  • Pregnancy
  • Reactive Oxygen Species / metabolism

Substances

  • PPAR gamma
  • Reactive Oxygen Species