Structure-Dependence and Mechanistic Insights into the Piezoelectric Effect in Ionic Liquids

J Phys Chem B. 2024 Feb 15;128(6):1495-1505. doi: 10.1021/acs.jpcb.3c07967. Epub 2024 Feb 1.

Abstract

We reported recently that two imidazolium room-temperature ionic liquids (RTILs) exhibit the direct piezoelectric effect (J. Phys. Chem. Lett., 2023, 14, 2731-2735). We have subsequently investigated several other RTILs with pyrrolidinium and imidazolium cations and tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions in an effort to gain insight into the generality and mechanism of the effect. All the RTILs studied exhibit the direct piezoelectric effect, with a magnitude (d33) and threshold force that depend on the structures of both the cation and anion. The structure-dependence and existence of a threshold force for the piezoelectric effect are consistent with a pressure-induced liquid-to-crystalline solid phase transition in the RTILs, and this is consistent with experimental X-ray diffraction data.