Physicochemical Stability Study of the Morphine-Bupivacaine-Ziconotide Association

Neuromodulation. 2024 Jan 31:S1094-7159(23)01008-5. doi: 10.1016/j.neurom.2023.11.009. Online ahead of print.

Abstract

Objective: The aim of this study was to investigate the physicochemical stability of morphine-bupivacaine-ziconotide mixtures used in intrathecal analgesia in polypropylene syringes and intrathecal pumps.

Materials and methods: The stability study method was conceived according to International Council for Harmonisation guidelines. For propylene syringes, six different mixtures of morphine-bupivacaine and ziconotide were assessed over seven days. Two storage temperatures were tested (5 °C ± 3 °C and 25 °C ± 2 °C). For implantable pumps, nine different mixtures were assessed over 60 days and stored at 37 °C. Assays were performed using ultrahigh-pressure liquid chromatography. Turbidity and pH also were measured throughout the study.

Results: Results confirmed excellent physicochemical stability for morphine and bupivacaine in the study for all conditions investigated (pumps at 37 °C, polypropylene syringes at 5 °C ± 3 °C and 25 °C ± 2 °C). Concerning ziconotide, after seven days, our study showed that every 95% confidence interval calculated had lower bounds >90% for all mixtures stored in polypropylene syringes. In implantable pumps, a decrease of the concentration was observed in all the mixtures studied. Moreover, the appearance of a degradation product confirmed the ziconotide degradation.

Conclusion: All results are in favor with a physicochemical stable preparation for six mixture profiles when stored in polypropylene syringes at 5 °C ± 3 °C and 25 °C ± 2 °C. For mixtures stored in implantable pumps, the efficacy should decrease over time owing to the degradation of ziconotide. A trade-off between high morphine concentration and increased refill interval will need to be found by clinicians.

Keywords: Bupivacaine; cancer pain; drug delivery system; intrathecal analgesia; ziconotide.