Acute Pulmonary Embolism and Immunity in Animal Models

Arch Immunol Ther Exp (Warsz). 2024 Jan 24;72(1). doi: 10.2478/aite-2024-0003. eCollection 2024 Jan 1.

Abstract

Venous thromboembolism, encompassing acute pulmonary embolism (APE) and deep vein thrombosis (DVT), is a potentially fatal disease with complex pathophysiology. Traditionally, the Virchow triad provided a framework for understanding the pathogenic contributors to thrombus formation, which include endothelial dysfunction, alterations in blood flow and blood hypercoagulability. In the last years, it has become apparent that immunity plays a central role in thrombosis, interacting with classical prothrombotic mechanisms, oxidative stress and vascular factors. Thrombosis amplifies inflammation, and exaggerated inflammatory processes can trigger thrombosis mainly due to the activation of leukocytes, platelets, and endothelial cells. APE-related endothelium injury is a major trigger for immune system activation. Endothelium is also a key component mediating inflammatory reaction and it is relevant to maintain vascular permeability. Exaggerated right ventricular wall stress and overload, with coexisting systemic hypotension and hypoxemia, result in myocardial injury and necrosis. Hypoxia, tissue factor activation and cytokine storm are engaged in the thrombo-inflammatory processes. Thrombus development is characterized by inflammatory state vascular wall caused mainly by an early extravasation of leukocytes and intense selectins and cytokines production. Nevertheless, immunity of DVT is well described, little is known about potential chemokine and cellular differences between thrombus that develops in the vein and thrombus that detaches and lodges in the pulmonary circulation being a cause of APE. There is a paucity of data considering inflammatory state in the pulmonary artery wall during an acute episode of pulmonary embolism. The main aim of this review is to summarize the knowledge of immunity in acute phase of pulmonary embolism in experimental models.

Keywords: chemokine; cytokine; endothelium; inflammation; platelet aggregation; pulmonary embolism.

Publication types

  • Review

MeSH terms

  • Animals
  • Endothelial Cells
  • Hominidae*
  • Inflammation
  • Models, Animal
  • Pulmonary Embolism* / complications
  • Thrombosis* / complications